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Abstract. There has been considerable interest in the study on the variable-coefficient nonlinear evo-
lution equations in recent years, since they can describe the real situations in many fields of physical
and engineering sciences. In this paper, a generalized variable-coefficient KdV (GvcKdV) equation with
the external-force and perturbed/dissipative terms is investigated, which can describe the various real
situations, including large-amplitude internal waves, blood vessels, Bose-Einstein condensates, rods and
positons. The Painlevé analysis leads to the explicit constraint on the variable coefficients for such a
equation to pass the Painlevé test. An auto-Bäcklund transformation is provided by use of the truncated
Painlevé expansion and symbolic computation. Via the given auto-Bäcklund transformation, three families
of analytic solutions are obtained, including the solitonic and periodic solutions.

PACS. 05.45.Yv Solitons – 02.30.Jr Partial differential equations – 52.35.Mw Nonlinear phenomena:
waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomo-
tive effects, etc.) – 47.35.+i Hydrodynamic waves

1 Introduction

The Korteweg-de Vries (KdV) equation,

ut + u ux + uxxx = 0 , (1)

is the prototype of the nonlinear evolution equations
(NLEEs), where the wave amplitude u(x, t) is a function
of x and t (or, of the “space” and “time”, often scaled di-
mensionless). Although equation (1) arose originally from
the long one-dimensional, small amplitude, surface grav-
ity waves propagating in a shallow channel of water [1], it
has been used to model a number of situations in physical
science and engineering, including hydromagnetic waves,
stratified internal waves, ion-acoustic waves, rotons, pi-
asma physics, lattice dynamics and geophysical fluid dy-
namics [1–6] (and references therein).

It is well known that equation (1) is solvable by the
inverse scattering method and then is completely inte-
grable [1,7]. The Painlevé analysis, Bäcklund transforma-
tion, Lax pairs and similarity reductions have been ob-
tained [8–10].
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However, the physical situations in which the constant-
coefficient NLEES arise tend to be much idealized,
due to the assumption of their constant coefficients.
When the media are inhomogeneous or the boundaries
are nonuniform, as seen, e.g., in superconductors [11],
plasmas [12] and optical-fiber communications [13], the
variable-coefficient NLEEs are able to model various sit-
uations more realistically than their constant-coefficient
counterparts [2,11–13]. An extension of KdV equation can
be used to describe the large-amplitude internal waves in
the coastal waters of the oceans, some of which have a
distinct soliton character [6,14], where the coefficients of
equation (1) vary with the vertical structure of the den-
sity and background flow, as observed in the Adriatic Sea
[5], eastern Mediterranean [15], north west shelf of Aus-
tralia [16], Baltic Sea [17], etc.

In this paper, we propose to study the Painlevé
property and Bäcklund transformation of the generalized
variable-coefficient KdV equation with the external-force
and perturbed/dissipative terms [18],

ut + f(t)u ux + g(t)uxxx + l(t)u = h(t) , (2)
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which describes the solitonic structures in a varying-depth
shallow-water tunnel, where f(t), g(t), l(t) and h(t) are
real differentiable functions, with f(t) �= 0 and g(t) �= 0.

Many physical and mechanical situations governed by
equation (2) have been seen, e.g., the propagation of pres-
sure pulses in fluid-filled tubes of special value in arterial
dynamics [19,20], the pulse wave propagation in blood
vessels and dynamics in the circulatory system [21,22],
matter waves and nonlinear atom optics enhanced by the
observations of Bose-Einstein condensation in the weakly-
interacting atomic gases [23–25], the nonlinear excitations
of a Bose gas of impenetrable bosons with longitudinal
confinement [26], the nonlinear waves in types of rods [27,
28], the infrared-absorption evidence of a positive-energy
electronic bound state within the continuum above a po-
tential well in the semiconductor heterostructures grown
by molecular-beam epitaxy [29–31]. The details can be
seen in reference [18] and references therein.

Special cases of equation (2), among others, include:

• The cylindrical case,

ut + 6 u ux + uxxx +
u

2 t
= 0 , (3)

which is solvable by the inverse scattering method
and then is completely integrable [32], with its
Painlevé analysis, Lax representation, similarity re-
ductions and analytic solutions obtained [33–35]. Re-
cently equation (3) has bee used to model the cylin-
drical dust-acoustic and dust-ion-acoustic waves in
space/laboratory dusty plasmas with varying velocity
and amplitude [34].

• The forced case,

ut + αuux + β uxxx = h(t) , (4)

for f(t) = α, g(t) = β and l(t) = 0, with its exact
solutions obtained by Jacobi elliptic function expan-
sion [36].

• The perturbed case,

ut + 6 u ux + uxxx + l(t)u = 0, (5)

for f(t) = 6, g(t) = 1 and h(t) = 0, which can pass the
Painlevé test only when l(t) ≡ 0 or l(t) = 1/[2 (t− t0)],
while the corresponding equation is the standard KdV
equation or cylindrical KdV equation respectively [37].

• The variable-coefficient case,

ut + f(t)u ux + g(t)uxxx = 0, (6)

for h(t) = 0 and l(t) = 0, which has the Painlevé
property only when

g(t) = f(t)
[
a+ b

∫
f(t) dt

]
, (7)

with its Bäcklund transformation, Lax pairs, similarity
reductions and analytic solutions given [36,38,39].

• The special case,

ut + a tn u ux + b tm uxxx = 0 , (8)

for f(t) = a tn, g(t) = b tm, h(t) = 0 and l(t) = 0,
which posseses the Painlevé property whenever m = n
or m = 2n+ 1, with its Bäcklund transformation, Lax
pairs and similarity reductions obtained [40].

This paper is arranged as follows. In Section 2, the
Painlevé test is extended to equation (2) in order to obtain
the constraints on the variable coefficients for equation (2)
to posses the Painlevé property. In Section 3, an auto-
Bäcklund transformation of equation (2) is provided via
the Painlevé truncation and symbolic computation [2,11–
13,41]. Furthermore, based on the given auto-Bäcklund
transformation, three families of the new analytic solu-
tions are obtained, including the solitonic and periodic
solutions. Final section will be our discussions and con-
clusions.

2 Painlevé analysis and auto-Bäcklund
transformation

A partial differential equation (PDE) is said to possess
the Painlevé property if its solutions are single valued
about the movable, singularity manifold and the singu-
larity manifold is noncharacteristic [8]. Following the ap-
proach of the Painlevé PDE test [8] and the simplified
Kruskal ansatz [42], we assume the solutions of equa-
tion (2) in a generalized Laurent expansion with the form,

u(x, t) = φp(x, t)
∞∑

j=0

uj(t)φj(x, t) with φ(x, t) = x+ψ(t),

(9)
where ψ(t) is an arbitrary function of t, and uj(t)(j =
0, 1, 2, · · · ) are analytic functions of t, in the neighbour-
hood of a noncharacteristic movable singularity mani-
fold defined by φ(x, t) = 0. Substituting expression (9)
into equation (2) and equating coefficients of like pow-
ers of φ determine p and define recursion relations for
uj(j = 0, 1, 2, · · · ). The Painlevé property requires that
p is a negative integer and the compatibility conditions
are identically satisfied.

The leading-order analysis gives that p = −2 and

u0 = −12
g

f
. (10)

The recursion relations are found to be

(j + 1)(j − 4)(j − 6)uj = Fj , (11)

where

Fj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1
g

[
uj−3,t + (j − 4)uj−2ψt

+ f

j−1∑
k=1

(k − 2)ukuj−k + luj−3

]
, j �= 5

−1
g

[
uj−3,t + (j − 4)uj−2ψt

+ f

j−1∑
k=1

(k − 2)ukuj−k + luj−3

]
+
h

g
, j = 5
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for j ≥ 0 (define uj = 0 for j < 0). We note that the
resonances occur at j = −1, 4 and 6, while j = −1 corre-
sponds to the arbitrariness of the function ψ(t). Therefore
there are two compatibility conditions at j = 4 and 6.

Putting j = 1, 2, · · · , 6 in (11) and using (10), we get

j = 1 : u1 = 0; (12)

j = 2 : u2 = − 1
f
ψt; (13)

j = 3 : u3 =
1
g

[(
g

f

)
t

+
gl

f

]
=

[
1
g

(
g

f

)
t

+
l

f

]
;

(14)

j = 4 : 0 · u4 = −1
g
[u1,t + 0 · u2ψt

+ f(−u1u3 + u3u1) + lu1]; (15)

j = 5 : u5 =
1
6g

(u2,t + u3ψt + fu2u3 + lu2) − h

g
;

(16)

j = 6 : 0 · u6 = −1
g
[u3,t + 2u4ψt + f(−u1u5 + u2

3

+ 2u2u4 + 3u5u1) + lu3]. (17)

It is easily seen that the compatibility condition at j = 4
is satisfied identically, and the compatibility condition at
j = 6 will give the constraint on the variable coefficients
for equation (2) to have the Painlevé property.

Substituting (12)–(14) into (17) yields the compatibil-
ity condition at j = 6,

[
1
g

(
g

f

)
t

+
l

f

]
t

+ f

[
1
g

(
g

f

)
t

+
l

f

]2

+ l

[
1
g

(
g

f

)
t

+
l

f

]
= 0. (18)

We make the transformation

v =
1
g

( g
f

)
t
+
l

f
, (19)

which brings equation (18) into the form of Bernoulli equa-
tion [44],

vt + f v2 + l v = 0. (20)

Case 2-I. v = 0:
In this case, equation (20) leads to(

g

f

)
t

+ l
g

f
= 0 , (21)

and then we have

g(t) = c1 f(t) e−
∫

l(t) dt, (22)

with c1 �= 0 as a constant of integration.

Case 2-II. v �= 0:
Solving equation (20) gives rise to

v =
e−

∫
l dt

c2 +
∫
fe−

∫
l dt dt

, (23)

where c2 is a constant of integration. Substituting this
back into equation (18), after some manipulations, we get

g = c3 f e
− ∫

l dt

(
c2 +

∫
f e−

∫
l dt dt

)
, (24)

with c3 �= 0 as a constant of integration.
Combining the above two cases, we thus obtain the

explicit constraint on the variable coefficients f(t), g(t)
and l(t) for equation (2) to pass the Painlevé test

g(t) = f(t) e−
∫

l(t) dt

(
a+ b

∫
f(t) e−

∫
l(t) dt dt

)
,

a2 + b2 �= 0 . (25)

Furthermore, it is easily found that Constraint (25) is the
same as that of the transformations from the equation (2)
to the cylindrical KdV and KdV equations which are com-
pletely integrable [18]. Therefore, equation (2) is predicted
to be completely integrable if and only if the variable co-
efficients of equation (2) satisfy Constraint (25).

3 Auto-Bäcklund transformation
and solutions

For the derivation of auto-Bäcklund transformation of
equation (2), we must work with the general form φ(x, t) =
0 of the noncharacteristic singularity manifold instead of
the simplified Kruskal ansatz φ(x, t) = x + ψ(t) in the
above Painlevé analysis [43]. With leading-order analysis,
we obtain the truncated Painlevé expansion at the con-
stant level term as

u(x, t) = φ−2(x, t)
2∑

j=0

uj(x, t)φj(x, t)

= u0(x, t)φ−2(x, t) + u1(x, t)φ−1(x, t) + u2(x, t) .
(26)

Substituting (26) into equation (2) and making the coef-
ficients of like powers of φ vanish yield

φ−5 : − 2 f u2
0 φx − 24 g u2

0 φ
3
x = 0

⇒ u0 = −12
g

f
φ2

x , (27)

φ−4 :f (u0u0,x − 3 u0u0,xφx) + 6 g (3 u0,x φ
2
x

+ 3 u0u0,x φx φx,x − u1 φ
3
x) = 0

⇒ u1 = 12
g

f
φxx , (28)

φ−3 : − 2u0φt + f(u0u1,x + u0,xu1 − u2
1φx − 2u0u2φx)

− 2 g (3 u0,xx φx + 3 u0,x φxx + u0 φxxx

− 3 u1,x φ
2
x − 3 u1 φx φxx) = 0 , (29)
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φ−2 :(u0,t − u1 φt) + f (u0u2,x + u1u1,x

+ u0,xu2 − u1u2 φx)
+ g (u0,xxx − 3 u1,xx φx − 3 u1,x φxx − u1 φxxx)
+ l u0 = 0 , (30)

φ−1 :u1,t + f (u1u2,x + u1,xu2) + g u1,xxx + l u1 = 0 ,
(31)

φ0 :u2,t + f u2u2,x + g u2,xxx + l u2 = h . (32)

By making use of equations (27) and (28), equa-
tions (29)–(31) become

2φx(φx φ t + f u2 φ
2
x + 4 g φx φxxx − 3 g φ 2

xx) = 0 , (33)

φx

{ [
f

g

( g
f

)
t
+ l

]
φx + φxt + f u2 φxx + g φxxxx

}

+
∂

∂x

(
φx φt + f u2 φ

2
x + 4 g φx φxxx − 3 g φ 2

xx

)
= 0,

(34)
∂

∂x

{[
f

g

( g
f

)
t
+ l

]
φx + φxt + f u2 φxx + g φxxxx

}
= 0

(35)

respectively. It is easily seen that equations (29)–(32) are
satisfied, provided that (φx �= 0)

φx φt + f u2 φ
2
x + 4 g φx φxxx − 3 g φ2

xx = 0 , (36)[
f

g

( g
f

)
t
+ l

]
φx + φxt + f u2 φxx + g φxxxx = 0 , (37)

u2,t + f u2u2,x + g u2,xxx + l u2 = h . (38)

Therefore, we obtain an auto-Bäcklund transformation of
equation (2) as follows,

u = 12
g

f

∂2

∂x2
lnφ+ u2, (39)

where φ satisfies equations (36) and (37), and u2 is a so-
lution of equation (2).

Via the above auto-Bäcklund transformation and
choosing the different u2(x, t) and φ(x, t), one can ob-
tain various solutions. In illustration, next we will pro-
vide three families of the analytic solutions, including the
solitonic and periodic solutions.

Case 3-I.
Setting

φ(x, t) = 1 + ep(t) x+q(t) , (40)
u2(x, t) = r(t)x + s(t) , (41)

where the differentiable functions p(t) �= 0, q(t), r(t) and
s(t) are to be determined, and substituting (40) and (41)
into equations (36)–(38) give rise to a set of the three
equations:

(p′ + f p r)x +(q′ + f p s+ g p3) = 0 , (42)

p
[
(p′ + f p r)x +(q′ + f p s+ g p3)

]

+p′ + p

[
f

g

( g
f

)
t
+ l

]
= 0 , (43)

(r′ + f r2 + l r)x +(s′ + f r s+ l s− h) = 0 . (44)

Fig. 1. The traveling wave solution surface u(x, t) via Expres-
sion (49) with α1 = 0, α2 = 1, α3 = 0, α4 = 1, f(t) = 1,
l(t) = 0 and h(t) = 0.

Solving equations (42)–(44) will give two family solu-
tions:

When r(t) = 0, we have

s(t) = e−
∫

l(t) dt
(
α1 +

∫
h(t) e

∫
l(t) dt dt

)
, (45)

p(t) = α2 , (46)

q(t) = −α2

∫
f(t) e−

∫
l(t)dt

[
α1 + α2

2 α4

+
∫
h(t) e

∫
l(t) dt dt

]
dt+ α2 α3 (47)

with the consistency condition is

g(t) = α4 f(t) e−
∫

l(t) dt , (48)

where α1, α2 �= 0, α3 and α4 �= 0 are all constants of
integration. We note that Constrain (48) is the special case
of Constrain (25) obtained by Painlevé test with b = 0.

We then obtain the first family of the exact analytic
solutions of equation (2),

uI(x, t) = e−
∫

l(t) dt
(
α1 +

∫
h(t) e

∫
l(t) dt dt

)

+ 3α 2
2 α4 e

− ∫
l(t) dt

× sech2

{
α2

2

[
x−

∫
f(t) e−

∫
l(t)dt

×
(
α1 + α2

2 α4 +
∫
h(t) e

∫
l(t) dt dt

)
+ α3

] }
,

(49)

which are the solitonic solutions.
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r(t) =
e−

∫
l(t) dt

α5 +
∫

f(t) e−
∫

l(t) dt dt
, (50)

s(t) =
e−

∫
l(t) dt

[
α6 +

∫
h(t) e

∫
l(t) dt(α5 +

∫
f(t) e−

∫
l(t) dt dt) dt

]
α5 +

∫
f(t) e−

∫
l(t) dt dt

, (51)

p(t) =
α7

α5 +
∫

f(t) e−
∫

l(t) dt dt
, (52)

q(t) = α7 α9 − α7

∫
h(t) e

∫
l(t) dt dt

+
α7

(
α6 + α2

7 α8 +
∫

h(t) e
∫

l(t) dt(α5 +
∫

f(t) e−
∫

l(t) dt dt) dt
)

α5 +
∫

f(t) e−
∫

l(t) dt dt
, (53)

uII(x, t) =
e−

∫
l(t) dt

[
x + α6 +

∫
h(t) e

∫
l(t) dt(α5 +

∫
f(t) e−

∫
l(t) dtdt) dt

]
α5 +

∫
f(t) e−

∫
l(t) dt dt

+
3α2

7 α8 e−
∫

l(t) dt

α5 +
∫

f(t) e−
∫

l(t) dt dt
sech2

{
α9 − α7

∫
h(t) e

∫
l(t) dt dt

2

+
α7

[
x + α6 + α2

7 α8 +
∫

h(t) e
∫

l(t) dt(α5 +
∫

f(t) e−
∫

l(t) dtdt) dt
]

2 (α5 +
∫

f(t) e−
∫

l(t) dt dt)

}
, (55)

Fig. 2. The solution surface u(x, t) via Expression (49) with
the same choices as Figure 1 except that h(t) = 0.8 sin t.

When r(t) �= 0, we have

see equations (50–53) above

with the consistency condition is

g(t) = α8 f(t) e−
∫

l(t) dt
(
α5 +

∫
f(t) e−

∫
l(t) dt dt

)
, (54)

where α5, α6, α7 �= 0, α8 �= 0 and α9 are all constants of
integration. We note that Constrain (54) is also the special
case of Constrain (25) obtained by Painlevé test but with
b �= 0.

Therefore, we obtain the second family of the analytic
solutions of equation (2),

see equation (55) above

which are the solitonic solutions.

Case 3-II.
If setting

φ(x, t) = 1 + ei[m(t)x+n(t)] , (56)
u2(x, t) = u2(t) , (57)

where the real differentiable functions m(t) �= 0, n(t) and
u2(t) are to be determined, then m(t), n(t) and u2(t) sat-
isfy the following equations:

m′ x+ n′ + f u2m− g m3 = 0 , (58)

i
[
f

g

( g
f

)
t
+ l

]
− (m′ x+ n′ + f u2m− gm3) = 0 , (59)

u′2 + l u2 = h . (60)

After some calculations, we obtain the third family of the
analytic solution of equation (2),

uIII(x, t) = e−
∫

l(t) dt
(
α9 +

∫
h(t) e

∫
l(t) dt dt

)

−3α4 α
2
10 e

− ∫
l(t) dt

×sec2

{
α10

2

[
x+

∫
f(t) e−

∫
l(t)dt

(
α4 α

2
10 − α9

−
∫
h(t) e

∫
l(t) dt dt

)
dt

]
+ α11

}
, (61)

which are the periodic solutions, where the variable co-
efficients f(t), g(t), l(t) satisfy Constraint (48), and
α9, α10 �= 0, α11 are all arbitrary constants.
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Fig. 3. The solution surface u(x, t) via Expression (49) with
the same choices as Figure 1 except that f(t) = 1 + sin t.
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Fig. 4. The solution surface u(x, t) via Expression (49) with
the same choices as Figure 1 except that l(t) = 1.

4 Discussions and conclusions

The variable-coefficient nonlinear evolution equations, al-
though their coefficient functions often make the studies
hard, are of current interests since they are able to de-
scribe the real situations in many fields of physical and
engineering sciences. In this paper, we have studied the
generalized variable-coefficient KdV equation, i.e., equa-
tion (2), with the external-force and perturbed/dissipative
terms, which can model the various real situations, includ-
ing large-amplitude internal waves, blood vessels, Bose-
Einstein condensates, rods and positons. The Painlevé
analysis leads to the explicit constraint on the variable
coefficients for such a equation to pass the Painlevé test.
An auto-Bäcklund transformation is presented by use of
the truncated Painlevé expansion and symbolic computa-
tion. Via the given auto-Bäcklund transformation, three
families of the new analytic solutions are obtained , in-
cluding the solitonic and periodic solutions. Now let us
conclude and discuss our results as below:

1. We have applied directly the PDE Painlevé test to
equation (2) and provided Constrain (25) which is the
necessary and sufficient condition for equation (2) to
have the Painlevé property. We have noted that Con-
straint (25) coincides with that of the transformations

Fig. 5. The solution surface u(x, t) via Expression (49) with
the same choices as Figure 1 except that α1 = 1 and f(t) = t.

Fig. 6. The solution surface u(x, t) via Expression (49) with
the same choices as Figure 1 except that α1 = 1, f(t) = t and
h(t) = sin t.

from the equation (2) to the cylindrical KdV and KdV
equations which both are completely integrable. Thus,
equation (2) is predicted to be completely integrable
if and only if the variable coefficients of equation (2)
satisfy Constraint (25).

2. We have also noted that Constraint (25) depends only
on the coefficient functions f(t), g(t) and l(t), and has
nothing to do with the external-force term h(t) of the
system. The reason is that h(t), existing in the space-
time (x, t) and obviously affecting the field u(x, t),
can be “absorbed” by a proper transformation/scaling
from u(x, t) to U(X,T ), so that we can discuss, in the
new space-time U(X,T ), the effect of the perturbation
on the new field U , without the external-force term any
more. In illustration, equation (2) can be transformed
into the equation

Ut + f(t)U UX + g(t)Uxxx + l(t)U = 0, (62)

with the transformation [18]

u(x, t) = U(X, t) +B(t) , (63)
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where

B(t) = e−
∫

l(t) dt

∫
e

∫
l(t) dth(t) dt ,

X = x−
∫
f(t)B(t) dt.

Hence, equation (2) is equivalent to equation (62) in
the sense of [45].

3. The more general KdV equation with the time and
space depending coefficients

ut + a(t)u+ (b(t, x)u)x + c(t)u ux

+ d(t)uxxx + e(x, t) = 0, (64)

has been considered, with its auto-Bäcklund transfor-
mation, Lax pairs given in references [46,47]. Using the
property of Lax pairs, reference [46] has obtained the
condition

bt +(a−Lc) b+ b bx +d bxxx = 2 a h+hL
d

c2
+
dh

dt
+ c e

+ x

(
2 a2 + aL

d3

c4
+
da

dt
+ L

d

c
L
d

c2
+

d

dt
L
d

c

)
,

(65)

where L = (d/dt) ln, and h(t) is an arbitrary and suffi-
ciently smooth function of t, which admits that equa-
tion (64) possesses the Painlevé property. We hereby
note that Constraint (65) is implicit and not obtained
directly by the Painlevé test, and that Constraint (65)
is only sufficient condition for equation (64) to have
the Painlevé property [46]. However, Constraint (25)
obtained directly by the Painlevé test in this paper is
given in explicit form, and is the necessary and suffi-
cient condition for equation (2) to have the Painlevé
property.

4. We have provided the auto-Bäcklund transformation
(39). Via this transformation and choosing the differ-
ent u2(x, t) and φ(x, t), one can obtain various solu-
tions. In illustration, three families of analytic solu-
tions have been presented, including the solitonic and
periodic solutions, which are Solutions (49), (55) and
(61). To our knowledge, these solutions have not been
obtained before, and are expected to be of value for
explaining the above various phenomena listed in the
first section.
For Solutions (49) and (61), e−

∫
l(t) dt is the attenua-

tion factor affecting the amplitude of the wave. The
field u(x, t) is exponentially sensitive to − ∫

l(t) dt,
which represents the accumulated effect of perturba-
tion over a time period. If

∫
l(t) dt� 1, the amplitude

will decrease exponentially.
However, for Solution (55), the attenuation factor is

e− ∫
l(t) dt

α5+
∫

f(t) e− ∫
l(t) dt dt

, which affects the amplitude of the
wave.

5. To investigate the effects the coefficient functions have
on Solution (49), we plot six graphs of the solution
surfaces with some special choices for the coefficient

functions and parameters listed in their captions. From
those figures, one can easily discover that the variable
coefficients make the solutions go beyond the traveling
waves, and obviously change the shapes or sizes of the
waves.
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